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1 Abstract

This Novartis internship at NIBR Text Mining Services explored multimodal
deep learning applications for medical images and text, in particular, au-
tomatic report generation from chest X-ray images, used daily in hospitals
diagnose chest diseases. Reading the images and writing reports requires
considerable training and time-investment. We speculate that to match the
physician-level disease understanding, the representations learned in unsu-
pervised manner for images and text should be jointly embedded into the
same vector space. As such, we could perform cross modal retrieval, i. e.,
ask the model to generate a paragraph with Findings and Impressions sec-
tions for a given image.

To learn the necessary skillset and get the first-hand experience for train-
ing a multimodal encoder-decoder architecture and its computational re-
source requirements, we first re-implemented several automatic image cap-
tioning models based on Microsoft COCO dataset. Next, we attempted to
address the issues specific for medical paragraph generation, namely, gener-
ating several rather than a single sentence and associating each word with
the relevant image patch.

We focused on an image-encoder text-decoder architectural variant called
Hierarchical LSTM Co-Attention model by Jing et al. (2018), and imple-
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mented this closed-source paper in Python and PyTorch. Although, our
implementation could not verify their results, we are encouraged to have
successfully applied the earlier encoder-decoder captioning (with attention)
to Open-I dataset. We hope this exploratory study will encourage future
research into generating representations with multimodal learning in phar-
maceutical setting.
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2 Introduction

Medical images such as chest radiograms, histopathology, retina and skin im-
ages are often used to diagnose and treat patients. Highly trained physicians
are tasked with understanding and interpreting such images. They write
a narrative text report in which they describe the state the organs exam-
ined, and state any anomalies detected. Additionally, a set of tags for the
suspected diagnosis is provided.

Since writing such reports is time consuming and requires specialized
training, it is not surprising that areas with low quality healthcare are most
affected by time and financial burdens. An automatic report generation of
medical images is one obvious approach to alleviate the problems above. Our
task here is to create a model which, upon inputting any biomedical image,
generates appropriate sentences describing the image objects, their relations
and the overall clinical impact of the particular image.
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Inevitably, such system must address the following challenges. First, the
reports have several heterogeneous categories. For instance, report for a chest
X-ray contains ”impression” section which is a single sentence (equivalent to
regular image captioning problem), ”findings” section is a paragraph, and
”tags” which are a list of keywords (see Figure 1). This can be solved in
a multitask setting by treating ”findings” generation as a hierarchical text
generation problem which utilizes the tag-image embeddings (tags obtained
from ”tagging” as a multi-label task). Second, correct location and classifi-
cation of abnormal regions, and generating narrations for them is at the core
of our task, the solution to it necessitates the use of a powerful joint image-
text embedding strategy. Third, providing visual evidence for a particular
generated sentence or a word is a desirable feature for a production-grade
medical system. Attention mechanisms are used to provide such evidence.

In this exploratory study we will first overview the current state of the
art in multimodal image-text learning, and the early methods for generating
reports for chest x-rays. Second, we will experiment with the latest models
and assess their suitability for medical report generation.

Figure 1: Example of an annotated chest X-ray image, taken from [45]

Our contributions to Novartis TMS are:

• Tested traditional encoder-decoder image captioning models, assessed
the training procedure and computational infrastructure requirements
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• Adapted three popular image captioning models (at single sentence
level) to chest x-ray captioning. These are used as baselines to evaluate
the hierarchical LSTM co-attention model.

• Attempted an open source implementation of Jing et al. (2018) paper
[21]

3 Literature Overview

In this section we will overview the seminal recent publications in the fields of
representation and multimodal learning, as well as recent progress in image
captioning task such as the use of encoder-decoder architectures and self-
attention.

3.1 Importance of Representation Learning

Good representation of the data is crucial for downstream predictive tasks.
In classical probabilistic learning framework such representation captures
the underlying posterior distribution of explanatory factors, while in deep
learning framework the input data is passed through a network of nonlinear
functions which yields more abstract and thus useful representations [7]. Ac-
cording to [7] features of useful representations include smoothness, sparsity,
expressivity, hierarchical nature of explanatory factors, and many others.

Typically deep representation learning is done with Encoder-Decoder ar-
chitecture, while autoencoder [16] and sequence-to-sequence [47] being the
most common models. The encoder is simply a function that maps an input
space to a latent space, and the decoder is another function that maps the
latent space to a target space. One can design an encoder-decoder system
using any neural network components, such as CNN or RNN, to encode the
complex input into a compressed latent space representation, and decode the
representation to a target output. The latent representation, also known as
embedding, located in the network layers between the encoder and decoder
is the learned representation for a given input.

Autoencoders transform a complex input into a compressed represen-
tation, which can be translated (decoded) into a reconstruction of input,
while minimizing the reconstruction loss. Such compressed representation
captures, or encodes, the essential data features while ignoring non-salient
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features. Sequence-to-sequence, is also used for Neural Machine Translation
tasks [47].

3.2 Language Representations - Word2Vec and BERT

Word embeddings are motivated by the limitations of traditional represen-
tations for words, such as a one-hot encoding or bag of words, which are
high dimensional and inefficient, since their encodings capture none of the
similarity or correlation information between words in the source text. For
example, in a corpus composed of three words ”I”, ”eat”, ”pizza” the Eu-
clidean distance between each encoding [1 0 0], [0 1 0], [0 0 1] is exactly 1,
and therefore carries no useful distance information.

Figure 2: 2D PCA projection of 100 dimensional skip-gram vectors of
country-capital pairs. Geographically and geopolitically close countries and
their capitals cluster together. Also, the concept of a country capital can be
expressed as an angle. Adapted from [36]

Conversely, the main idea behind Word2Vec, a popular word embedding
is that a word’s meaning is largely captured by its context - neighboring
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words [36]. W2v embedding models this contextual information by taking a
word wt and predicting its context with a skip-gram model, which aims to
maximize the mean log likelihood:

1/T
T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt),

where c is context window size. The model creates a lower-dimensional space
such that words that appear in similar contexts will also be close together in
this new space, see Figure 2. Dimensionality for each word in the corpus is
typically set to 200 or 300.

The main application of such word embeddings has been in the use of
transfer learning, where embeddings are first learned using extremely large
sources of unlabeled general text (from web-crawls, Wikipedia dumps, etc),
and then used in supervised learning with recurrent neural networks which
accepts the pre-trained embeddings as inputs.

Figure 3: Training BERT (left) consists of reading a sequence of w2v word
embeddings at once, passing them through a Transformer encoder and pre-
dicting the contexts of each word (masked out 15% of sequence words). Such
pretrained model can be fine-tuned to succeed in MNLI, NER, SQuAD tasks
(right) [9]

.

Recently, pretrained high-capacity language models such as ELMo [39]
and BERT [9] have become increasingly important in NLP. They are opti-
mised to either predict the next word in a sequence or some masked word
anywhere in a given sequence (“Obama was born in [mask] in the year 1967”).
For example, BERT reads a large sequence of words all at once (typically it’s
done one-by-one) to learn all the words’ contexts at once, see Figure 3.
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It utilizes a transformer architecture [50] for the encoder with w2v word
embeddings as inputs, and an additional classifier layer on top of encoder
to predict masked out 15% of words in the sequence. Finally, we get the
soft-max probabilities for each word at each sequence position.

Such models with millions of parameters capture huge amounts of lin-
guistic knowledge to facilitate downstream tasks. This knowledge is usually
accessed either by conditioning on latent context representations produced
by the original model or by using the original model weights to initialize a
task-specific model which is then further fine-tuned. This type of knowledge
transfer is crucial for current state-of-the-art results on a wide range of tasks.

Language models pretrained on generic corpora (such as Wikipedia) can
be applied to a more specialized domain by transfer learning[40]. For exam-
ple, recently Beam et al., [6] published a comprehensive set of embeddings
for medical concepts, cui2vec, by combining extremely large sources of mul-
timodal healthcare data. For a review of recent trends in deep learning NLP
see [59].

3.3 Image Representations

Convolutional neural networks (CNN) such as LeNet [29], AlexNet [28],
VGGNet [46], GoogleNet [48], and ResNet [15] are trained on ImageNet
dataset for classification, detection and other vision tasks, for which they
outperform human subjects.

CNNs can be easily integrated into multimodal learning models (see 3.4)
and trained jointly with other modalities like text. However, they take sig-
nificant time and computational resources to achieve human-level accuracy.
Thus, pre-trained versions of CNNs are used instead, namely, by taking the
penultimate CNN layer weights (for classification task, before SoftMax func-
tion) which are good image representations and inputting them to the mul-
timodal model.

However, popular datasets like ImageNet contain images of generic every-
day life scenes which are very different from medical images. To apply CNN
models in medical imaging domain, they are fine-tuned. For example, Incep-
tion CNN model was fine-tuned by [10] to classify skin lesions into malignant
or benign, achieving results close to the ones predicted by dermatologists.
This proved that CNNs, pre-trained on ImageNet, can be successfully fine-
tuned for medical imaging tasks, despite the differences between general and
medical images. In another seminal work, [41] encoded chest X-ray images
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with a pretrained DenseNet-121 architecture to predict 14 types of thoracic
diseases.

Practically, penultimate layers of various CNN-based architectures are
used. For example, VGGNet, a 4096-dimensional embedding [46], is often
chosen as the input into image-text joint embedding procedure. Also, the
full-sized input image can be encoded with the final convolutional layer of
Resnet-101 [15]. Facebook’s Pythia uses fc6 and fc7 layers from Detectron
(based on ResNeXt [56]).

3.4 Multimodal Learning

What is multimodal learning? The objects or concepts in our world can be
represented by different signal classes, often recorded by a different instru-
ment, such as sound, text, image, video, graph, etc. Therefore, a ”modality”
here refers to a particular way of acquiring information about the object, and
representation learning from several classes or modalities of signals is known
as multimodal learning.

Why it’s useful to combine two modalities? In multimodal learning set-
ting we aim to learn a shared representation from different modalities for
the same phenomenon. Consequently, more information is learned about the
phenomenon than if only one mode was considered. Using these multimodal
representations has paved ground for more accurate models compared to
unimodal models. For a broader review of multimodal benefits and current
challenges see [5] and [14].

As seen in Figure 4, the feature vectors from text and image modalities
are originally located in unequal subspaces, that is the correlations between
the two modalities are highly nonlinear, thus proving hard to learn. There-
fore, the vector representations associated with similar semantics would be
completely different, a problem known as heterogeneity gap. Consequently,
subsequent learning algorithms will not make accurate predictions. Multi-
modal representation learning aims to project the heterogeneous data of dif-
ferent modalities into a shared vector subspace, where the multimodal data
with similar semantics will be represented by similar vectors. Effectively, we
are lowering the distribution gap in a joint semantic space while keeping the
modality specific semantics intact [42].

In practice, integrating individual feature representations into a multi-
modal one is achieved by three common frameworks with distinct architec-
tures: joint representation, coordinated representation, and encoder-
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Figure 4: Multimodal learning allows to learn a common subspace in which
heterogeneous data of two different modalities (circles and squares) is pro-
jected into a common vector space. As a result, the data with similar seman-
tics will be represented by similar vectors. Adapted from [42]

decoder, Figure 5. Joint representations are projected to the same space
using all of the modalities as input, in the simplest case, by concatenat-
ing the two feature vectors. Meanwhile the coordinated representations ex-
ist in their own space, but are coordinated through a similarity (e.g. Eu-
clidean/cosine distance) or structure constraint (e.g. partial order). Finally,
encoder-decoder architecture maps source modality to a latent (representa-
tion) vector, then decoder generates a new sample of target modality. Such
architecture, first used in neural machine translation, has proved a leading
method for image captioning task.
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Figure 5: Approaches to learn deep multimodal representations. (a) Joint
approach – project individual representations (notice several layers) from
two modalities to the shared semantic space so that they can be fused. (b)
Coordinated approach permits individual modalities to remain in their own
space, but they are coordinated through a similarity (cosine distance) or
structure constraints. (c) Encoder-Decoder maps source modality to a latent
representation, from which the decoder generates a new sample of target
modality. Such framework translates one modality into another while keeping
their semantics consistent.

3.5 Image Captioning - Multimodal Learning Task with
Encoder-Decoder Architecture

Deep learning has revolutionised the computer vision field. Image classifica-
tion, where the task is to assign one label to an image, was the first success
story in deep learning. Then followed object detection: identifying and label-
ing multiple salient regions of an image. Most recently, the image captioning
task expanded the complexity of the label space from a fixed set of categories
(1,000 possible labels in ImageNet dataset) to sequence of words able to ex-
press significantly richer concepts [25]. Now it is multimodal learning’s turn
to uproot computer vision!

A big part of multimodal machine learning is concerned with translating
(mapping) from one modality to another. Given an entity in one modality
the task is to generate the same entity in a different modality. For example,
given an image we might want to generate a sentence describing it or given a
textual description generate an image matching it. To solve it, we not only
need to fully understand the visual scene and to identify its salient parts,
but also to produce grammatically correct and comprehensive yet concise
sentences describing it.

Since 2014 a steady wave of image captioning models based on encoder-
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decoder framework has flooded the conference halls. This upsurge was en-
abled by the success of such frameworks in neural machine translation
task. Indeed, image captioning with encoder-decoder can be seen as machine
translation of an image into a description.

[25] first proposed multimodal neural language models - models of
natural language that can be conditioned on other modalities, such as images.
An image-text multimodal neural language model can be used to retrieve
images given complex sentence queries, retrieve phrase descriptions given
image queries, or generate text conditioned on images. In their seminal
work [26] demonstrated that we can jointly learn word representations and
image features by training a CNN-based model with image and text data.
However, the joint embedding is done via two separate pathways, and even
though they can generate text, their approach is highly tuned for the ranking
task by finding the best encoder. Thus unseen objects cannot be recognized.

Karpathy et al. [24] introduced a model of bidirectional retrieval
of images and sentences. Unlike previous works, they do not map images
or sentences into a common space. Instead, their model works at a finer
scale and embeds fragments of images and fragments of sentences into a
common space. The sentence fragments are represented as dependency tree
relations that are based on the dependence tree of the sentence, and the
image fragments are represented by a CNN. First, objects in the image are
detected using Region Convolutional Neural Network (RCNN). The top 19
detected locations and the entire image are used as image fragments. Each
image fragment is embedded using a CNN which takes the image inside a
given bounding box and returns the embedding. Finally, they suggest a
similarity score for any image-sentence pair.

The next big success came with an encoder-decoder model by Vinyals
et al. [52], the first end-to-end image captioning model. As such, the image is
shown to the RNN at the beginning, unlike in [26], where the model sees the
image at each time step of the output word sequence. Both above methods,
represent images as single feature vectors from the top layer of pre-trained
CNN.

3.6 Image Captioning with Attention Models

The above methods compressed an entire image into a static representation
and did not generate good captions when multiple objects or complex scenes
were present. Attention to the rescue! Attention is a way of obtaining a
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weighted sum of the vector representations of a layer in a neural network
model [4]. Attention layer allows for important features to come forward as
needed, and elucidates what the model ”sees”. It is used in diverse tasks rang-
ing from machine translation, language modeling to image captioning, and
object recognition. Apart from substantial performance benefit, attention
also provides interpretability to neural models, which are usually criticized
for being black-box function approximators.

Figure 6: CNN encoder - LSTM attention decoder architecture. From an
”early” CNN layer several D-dimensional vectors are extracted, and corre-
spond to regions in the image. LSTM generates one word per time-step,
conditioned on previous hidden state, generated words and context vector
for that word. The image areas responsible for generating a particular word
(three colored boxes) are colored with a stronger shade of white. Adapted
from [57].

Xu et al., [57] first introduced the sequence-to-sequence model with spa-
tial attention for the image captioning task. They conditioned the LSTM
decoder on different parts of the input image during each decoding step (1
word generated per step), thus producing a distribution over image regions
for each word (Figure 6). Compared to [52], here lower-level features from
CNN are used, as opposed to the penultimate CNN layer, in this way pre-
serving correspondence to the 2-D image portions. This allows the decoder to
selectively focus on certain parts of an image by selecting a subset of all the
feature vectors. LSTM generates one word at every time-step conditioned
on a context vector (which captures the dynamic representation of the rel-
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evant part of the image input at a current step), the previous hidden state
and the previously generated words. Thus we can learn which locations to
focus on for producing the next word. There are two attention mechanisms
compared: stochastic Hard and deterministic Soft attention.

Such model forces visual attention to be active for every generated word,
except for short conjunctions like ”and” or ”but”, and other words that may
seem visual can often be predicted reliably just from the language model
e.g., ”sign” after ”behind a red stop” or ”phone” following ”talking on a
cell”. [33] propose a novel adaptive attention model with a visual sentinel.
At each time step, the model decides to which image regions to attend or to
the visual sentinel in order to extract meaningful information for sequential
word generation.

3.7 Paragraph-level Image Captioning

Figure 7: Krause 2017 implementation uses a region detector, comprised of
CNN and region proposal network, to detect regions of interest and encode
them one-by-one to d = 4096 vectors. These vectors are max-pooled into
a single vector. Decoder is a hierarchical sentence RNN, which for each
sentence/topic generates words with word RNN. Adapted from [27]

.

Above image captioning models have a key limitation – describing images
with a single high-level sentence. Dense captioning model [23] solves this
problem by feeding convolutional image features through a so-called local-
ization layer which proposes a variable number of regions of interest (with
Faster R-CNN). Next, each region of interest gets described with an LSTM-
generated caption. However, each caption is independent from one another
and the generated sentences are incoherent.
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This problem is addressed by Krause et al (2016) [27] where the input
image is decomposed by detecting objects and other regions of interest, then
aggregate features across these regions to produce a pooled representation
richly expressing the image semantics (Figure 7).This feature vector is taken
as input by a hierarchical recurrent neural network composed of two levels:
a sentence RNN and a word RNN. The sentence RNN receives the image
features, decides how many sentences to generate in the resulting paragraph,
and produces an input topic vector for each sentence. Given this topic vector,
the word RNN generates the words of a single sentence.

3.8 Methods for constructing image-text joint embed-
ding space

Let X and Y denote the collections of training images and sentences, each
encoded according to their own feature vector representation. We want to
map the image and sentence vectors (which may have different dimensions
initially) to a joint space of common dimension. If the embeddings are L2
normalized then we can use inner product over embedding space to measure
similarity/distance between two vectors in such space by Euclidean distance
[53]. Benefits of joint embedding: for document retrieval tasks with the
learned representations, only a limited amount of supervision is needed to
yield results comparable to those of fully-supervised methods (Hsu 2018).
Task evaluation is done by image-sentence retrieval.

3.9 Visual Question Answering

Despite the above-mentioned benchmark-crushing results, there is a strong
evidence that the image captions alone do not capture an informative image
representation. For example, [2] demonstrated that human subjects asked
to answer a question about an image only after seeing image’s captions were
significantly less accurate compared to answering the same questions but
this time while observing the actual image. Authors, in their seminal work,
proposed instead the VQA - a new multimodal learning task. Microsoft’s
researchers launched the first VQA Challenge, which still runs yearly since
2015. Most importantly, they created a new MSCOCO-based [31] VQA
dataset (200k images) supplemented with synthetic clipart, featuring 600k
questions and 8mln answers. Task performed best with an LSTM and CNN
architecture supplemented with captions. Dataset was recently balanced [13]
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to include complementary images such that every question in our balanced
dataset is associated with not just a single image, but rather a pair of similar
images that result in two different answers to the question.

Since then, various attention tricks were borrowed from neural machine
translation field to help with the problem of ”where to look” in the training
images. [58] proposed a stacked attention model which queries the image for
multiple times to infer the answer progressively. Meanwhile [34] exploit a
hierarchical question-image co-attention strategy to attend to both related
regions in the image and crucial words in the question. Attention mechanism
can find the question-related regions in the image, which accounts for the
answer to some extent. But the attended regions still don’t explicitly exhibit
what the system learns from the image and it is also not explained why these
regions should be attended to.

The so-called Bottom-Up Top-Down model is the winner of 2017 VQA
challenge [1; 49]. Bottom-up attention gives bounded region boxes around the
most salient image objects (obtained through a Faster R-CNN framework),
each region is represented by a pooled convolutional feature vector. Such
approach is supported by the recent success of regional proposal based (R-
CNN) object detection algorithms [11; 12; 43]. The method uses a fixed
threshold on object detection, and the number of features K is therefore
adaptive to the contents of the image. The question text is then used to
compute the task-specific top-down attention for each object in the image
(with ResNet-101). It is worth mentioning, that bottom-up attention model
is pretrained by initializing Faster R-CNN with ResNet-101 pretrained on
ImageNet classification task. Multi-modal fusion of features is achieved by
an entry-wise product, followed by a multi-label classifier with a sigmoid
activation function to predict the candidate answer scores.

Next year’s VQA winner Pythia [20] improved model’s top-down atten-
tion by combining visual and textual feature vectors via element-wise multi-
plication, instead of concatenating them. Similarly, previous batch normal-
ization’s shortcomings due to mini-batch dependence in RNN architectures
were ameliorated by normalizing the weight within a layer [44].
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Figure 8: Hierarchical LSTM Co-Attention architecture as used by Jing et
al (2018). Decoding begins with VGG-19 CNN visual features for image
patches, fed directly into a multi-label classifier to predict disease tags, rep-
resented as word2vec 512 dim embedding (semantic feature) vectors. Those
are fed together with visual features to generate context vector which pays
attention to both of these features. Decoder takes in the context vector, and
produces sentences in a hierarchical manner: context vector is fed into a sen-
tence LSTM, which unrolls for a few steps to produce a 512-dim topic vector
at each step. Meanwhile, word LSTM produces words for each topic/sentence
vector.

3.10 Medical Image Captioning and Report Genera-
tion

Within the last 5 years, tens of medical image datasets have been made
publicly available. Leveraging medical images and accompanying free text
reports to improve disease state representations is an emerging field.

Up until recently, most of text trained with X-ray images was structured
or semi-structured (templates, tags). For example, [45] proposed an convolu-
tional encoder and recurrent network decoder framework that jointly trained
from chest X-ray and doctor’s report to predict simple tags relating to disease
categories, abnormality locations and severities.

[21] improved X-ray image annotation and report text generation base-
lines in a multi-task learning framework, which includes a co-attention and
hierarchical LSTMs. Model generates paragraph captions using a hierarchi-
cal LSTM, but unlike Krause et al. (2017), uses a co-attention network to
generate topics.

[55] proposed a text-image embedding network to automatically generate
X-ray reports (based on ChestX-ray dataset [54]) in an end-to-end trainable
CNN-RNN architecture. Meaningful report words and image regions were
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highlighted via multi-level attention models.
The recently released MIMIC-CXR [22] was used establish benchmarks

in both supervised and unsupervised text-image embeddings [17], and more
recently, a domain-aware automatic chest X-ray radiology report generation
system [32] which first predicts what medical topics will be discussed in
the report, then conditionally generates sentences corresponding to these
topics. At the core, the system uses hierarchical convolutional-RNN, and
is trained by a reinforcement learning model with the Clinically Coherent
Reward policy, considering both readability and clinical accuracy, as assessed
by the proposed Clinically Coherent Reward.

4 Datasets

4.1 Proof of Concept Datasets

We envision building and training the first iterations of multimodal models
on a series of well-established image-text datasets. Microsoft COCO [31]
consists of 318k images with 2.5mln labeled instances of 91 object categories.
Additionally, each object instance is segmented, and every image has five
human-written single-sentence captions. Human subjects often disagree on
the ”correct” answer, so 10 people had to answer them. Machine generated
answer accuracy metric is: min(1, # humans that provided that answer)/3),
so 100 % accuracy is reached if at least 3 humans provided that exact answer.

The first specialized dataset for Visual uestion answering task, VQA
[2; 13], is derived from MSCOCO, VQA 2.0 contains 200k images, 1.1mln
questions and 11mln answers. GQA is a recent VQA dataset [18] that fo-
cuses on real-world compositional reasoning. It contains 113k images and
2M questions which are answered from scene graphs, serving as a form of
structured semantic representation, thus describing objects’ attributes and
physical inter-relations.them comes with an underlying structured represen-
tation of their semantics

Taking a further step towards ”strong AI” is OK-VQA dataset [35],
providing a benchmark for knowledge-based VQA, where the answer is not
explicitly present in the image. For instance, upon asking which political
entity is depicted in a blue flag with 12 yellow stars, the model would answer
”the European Union”.
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4.2 Medical Image Datasets

It is a challenge to find text labeled medical images, for example the re-
cent headline breaking binary classifiers such as CheXNet were done on
images labeled for one particular disease, and only in binary fashion (lesion
present/absent). See Figure 9 for full list of datasets and their limitations.

Figure 9: Available chest X-ray datasets and their characteristics, taken from
[32]. Only Open-I and MIMIC-CXR datasets are useful for us, since they
have real doctor reports.

There are only two datasets that contain radiologist’s text (see Figure
9. For our proof-of-concept work, we chose the smaller, more established
IU X-ray [19], which contains 3,826 radiology reports associated with 7,430
X-rays. We used 80:10:10 training:validation:test split.

In terms of further pre-processing, punctuation and numbers removed
with NLTK library. Corpus was 1,800 unique words, and we limited our
vocabulary to 1,286 words after filtering for words that occurred at least 3
times in the training set, resulting in 1,268 words. punctuation and numbers,
which resulted to 1820 unique words. Average paragraph length is 30 words,
in 5 sentences.

Report consists of the impressions and findings sections, which for our
purposes are concatenated together as a long paragraph, since impression
can be viewed as a conclusion or topic sentence of the report.

Findings section posed as the most important component, ought to cover
contents of various aspects such as heart size, lung opacity, bone structure;
any abnormality appearing at lungs, aortic and hilum; and potential diseases
such as effusion, pneumothorax and consolidation. And, in terms of content
ordering, the narrative of findings section usually follows a presumptive order,
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e.g. heart size, mediastinum contour followed by lung opacity, remarkable
abnormalities followed by mild or potential abnormalities.

Eventually, we aim to expand our model to MIMIC-CXR [22] - a new
publicly available dataset of chest radiographs with structured labels, con-
taining 370k images from 220k radiographic studies, each marked by the
CheXpert labeler with one of 14 categories. The image-accompanying report
contains ”findings” and ”impression” sections, which describe, respectively,
the image patterns as seen by the clinician, and clinical interpretation of
those patterns. Medical Text Indexer (MTI) [37] is used to extract tags from
the ”findings” and ”impression” sections of the reports, since they’re not
present by default. We will use MTI labeler and, since it doesn’t handle
negations, MetaMap [3] to detect tags with negation and discarded them.

4.3 Computing Resources

JupyterHub on Novartis HPC. PythonDS environment module has pytorch
1.2.0, torchvision 0.4.0 and keras-gpu 2.2.4

5 Project Goals

5.1 Test current Image Captioning Models

In order to get a feel for the data, and the computational complexity for
image-text embedding, we will attempt to replicate a study with a generic
dataset (MSCOCO) first, and later, apply it to medical image dataset. MSCOCO
image captioning is performed by the following three models:

• Encoder-decoder model from ”Show and Tell” paper [52], see section
3.5. Model implementation adapted from github user sgrvinod’s repos-
itory.

• Encoder-decoder model with attention from ”Show, Attend and Tell”
by [57], see section 3.6. Implementation adapted from github user
sgrvinod’s repository

• Bottom-Up and Top-Down Attention system from [1], see section 3.9.
Implementation adapted from github user poojahira’s repository
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5.2 Implement Chest X-ray Captioning Baselines

In the second step, we will adapt the Encoder-decoder model from ”Show and
Tell” paper [52] and encoder-decoder model with attention from ”Show, At-
tend and Tell” by [57] to UI dataset (see section 9) from the famous MSCOCO
dataset [31].

We will evaluate Pairwise and Triplet Ranking Loss functions. Both of
these objectives focus on updating the weights only when the distance s()
between generated sentences and true images (and vice versa) is less than
some margin m.

5.3 Implement Hierarchical LSTM Co-Attention

We followed the closed source paper by Jing et al (2017) [21], which achieved
state of the art results on IU dataset at the time of publications (see Figure
8). The primary objective was to write an open source implementation of
this study, as the authors have kindly refused to release the source code,
and attempt to replicate their results. The Hierarchical LSTM Co-Attention
model is based on Krause et al. [27], except that a number of assumptions
had to be made to adapt the model from MSCOCO to IU X-ray dataset,
most importantly that a co-attention network is used to generate topics, as
opposed to the attention-free region proposal network approach.

For further details see the full implementation at ./utils/models.py

6 Model of Interest: Hierarchical LSTM Co-

Attention (HLCA)

We will describe in detail the HLCA model that we attempted to implement
in PyTorch and apply to IU and MIMIC-CXR datasets.

6.1 HLCA model at a glance

A sample X-ray diagnostic report is shown in Figure 1, and consists of
long paragraphs and list of medical term/disease tags. The decoding process
begins when VGG-19 CNN is used to learn visual features for image patches,
and feed them directly into a multi-label classifier to predicts medical disease
MTI tags (600 possible tags), represented as word2vec 512 dim embedding
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vectors (see Figure 8). These word embedding vectors are the semantic
features for the image, and are fed together with the ”raw” VGG-199 CNN
visual features to generate context vector which pays attention to both
visual and semantic features.

Decoder takes in the context vector as its input, and outputs generated
sentences in a hierarchical manner: context vector is inputted into a sentence
LSTM, which unrolls for a few steps and produces a 512-dim topic vector
at each step. A topic vector represents the semantics of a sentence to be
generated. Meanwhile, word LSTM generates a sequence of words for each
topic/sentence vector.

6.2 MTI Tag Prediction with Multi-label Classifier

For an image I, a total of N D-dimensional features are extracted {vn}Nn=1 ∈
RD from the last convolutional layer of VGG-CNN. Next these features are
fed into MLC network to generate a distribution of over all L = 600 tags:

pl,pred(li = 1|{vn}Nn=1) ∝ exp(MLCi({vn}Nn=1)) (1)

where l ∈ RL is a tag vector, identity li = 1, 0 denotes presence of the i-
th tag respectively, and MLCi means the i-th output of the MLC network.
Then, M most probable tags (M = 5 in our experiments) are embedded with
E = 512-dimensional word2vec as the semantic features: {am}Mm=1 ∈ RE.

6.3 Attention for visual and semantic features

With every ”unrollling” of sentence LSTM at some time step s, the context
vector ctx(s) ∈ RC is generated by a co-attention network fcoatt({vn}Nn=1,

{am}Mm=1, h
(s−1)
sent ), where h

(s−1)
sent ∈ RH is the sentence LSTM hidden state at

time step s− 1. The co-attention network fcoatt uses a single layer fully con-
nected net to compute the soft visual attentions and soft semantic attentions
over input image features and tags:

αv,n ∝ exp(Wvatt tanh(Wvvn + Wv,hh
(s−1)
sent ))

αa,m ∝ exp(Waatt tanh(Waam + Wa,hh
(s−1)
sent ),
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where Wv, Wv,h, Wvatt and Wa, Wa,h, Waatt are learned parameters for
visual and semantic attention neural net, respectively.

From αv,n and αa,m, we can calculate the visual and semantic context
vectors:

v
(s)
att =

N∑
n=1

αv,nvn, a
(s)
att =

M∑
m=1

αa,mam.

Finally, visual and semantic context vectors are combined into a joint
context vector by:

ctx(s) = Wfc[v
(s)
att;a

(s)
att], (2)

where the two vectors are first concatenated, then passed through a fully-
connected layer. A more straightforward alternative to using another layer
would be a simple concatenation operation.

6.4 Sentence LSTM

This is a single-layer LSTM that takes the joint context vector ctx ∈ RC as
its input, and generates topic vector t ∈ RK for word LSTM through topic
generator:

t(s) = tanh(Wt,hsenth
(s)
sent +Wt,ctxctx

(s)) (3)

where Wt,hsent and Wt,ctx are weight parameters.
In order to stop generating sentences, the RNN takes in the previous and

current hidden state h
(s−1)
sent , h

(s)
sent as input and produces a distribution over

{STOP=1, CONTINUE=0}:

p(STOP |h(s−1)
sent ,h

(s)
sent) ∝ exp{Wstop tanh(Wstop,s−1h

(s−1)
sent +Wstop,sh

(s)
sent)} (4)

where Wstop, Wstop,s−1 and Wstop,s are parameter matrices. If p(STOP |h(s−1)
sent ,h

(s)
sent)

is greater than 0.5, then the sentence LSTM will stop producing new topic
vectors and the word LSTM will also stop producing words.
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6.5 Word LSTM

Word LSTM is identical to that of Krause et al (2017) [27], and takes in
the topic vector t produced by the sentence LSTM and the special START
signal as inputs. The hidden state hword ∈ RH of the word LSTM is directly
used to predict the distribution over words:

p(word|hword) ∝ exp(Wouthword) (5)

6.6 Loss Function for Sentence and Word Generation

Loss function used by [21] Given a training image I, true tag vector l and
paragraph w (with s sentences), our model first performs multi-label classi-
fication on I and produces a distribution pl,pred over all tags. Note that l is a
binary vector which encodes the presence and absence of tags. Ground-truth
tag distribution by normalizing l: pl = l/||l||1. The training loss of this step
is a cross-entropy loss `tag between pl and pl,pred.

Next, the sentence LSTM is unrolled for S steps to produce topic vectors
and also distributions over {STOP, CONTINUE}: psstop. Finally, the S topic
vectors are fed into the word LSTM to generate words ws,t. The training
loss of caption generation is the combination of two cross-entropy losses: `sent
over stop distributions psstop and `word over word distributions ps,t. Combining
the pieces together, we obtain the overall training loss:

`(I, l,w) = λtag`tag+λsent

S∑
s=1

`sent(p
s
stop, I{s = S})+λword

S∑
s=1

Ts∑
t=1

`word(ps,t, ws,t)

(6)

Trained model, the joint image and text embedding, can be found at
/report_v4_models/<model_name>/train_best_loss.pth.tar

6.7 Metrics

BLEU [38] - used for translation; precision and recall are approximated by
modified n-gram precision (fraction of n-grams in the candidate text which
are present in any of the reference texts) and best match length.
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ROUGE [30] is based only on recall, and is mostly used for summary
evaluation. ROUGE-n: This is based on n-grams. For example, ROUGE-1
counts recall based on matching unigrams, and so on. For any n, we count
the total number of n-grams across all the reference summaries, and find out
how many of them are present in the candidate summary. This fraction is
the required metric value.

METEOR [8] is another metric for machine translation evaluation, and it
claims to have better correlation with human judgement. Similar to BLEU,
but it reduced BLEU’s dependency on average length value across the corpus,
by replacing precision and recall calculations with weighted F-score.

CIDER [51] is a recent automatic consensus metric of image description
quality, measuring the similarity of a generated sentence against a set of
ground truth sentences written by humans. It shows high agreement with
consensus as assessed by humans. Using sentence similarity, the notions of
grammaticality, saliency, precision and recall are inherently captured.

7 Results

7.1 Performance on NLP Metrics

In this section we compare the results from the original to our implementation
of Hierarchical LSTM Co-Attenion model by [21] (see Table 1). Training
took for 350 epochs, each epoch lasting around 15 minutes, with NVIDIA
Tesla K80.

Unfortunately, we could not replicate the performance as seen in [21] Ta-
ble 1, as the Train, Val and Test scores are significantly lower than the original
Test scores. Multi-label classifier and overall model training performance is
shown in Figure 10 and Figure 11. We can see that the model failed at
building a multi-label tag classifier. However, the project time ran up before
we could fix the bug. Training implementation is located at ./train.py

On the upside, the performance of our attempt at Enc-Dec and Enc-
Dec+Att models was only marginally lower compared to the baselines re-
ported in [21].

Also, we independently trained Encoder-Decoder and Encoder-Decoder
with Attention architectures with IU X-ray dataset (see * in Table 1).
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDER
Train 0.286 0.275 0.215 0.176 0.187 0.369 0.403
Val 0.240 0.182 0.118 0.077 0.143 0.256 0.172
Test 0.213 0.190 0.123 0.081 0.158 0.224 0.120

Jing 2018 [21] 0.517 0.386 0.306 0.247 0.217 0.447 0.327
Enc-Dec* [52] 0.298 0.207 0.111 0.088 0.151 0.249 0.114

Enc-Dec
+ Att* [57] 0.356 0.243 0.165 0.120 0.159 0.323 0.301

Table 1: Results for paragraph generation on the IU X-Ray dataset. We
compare our implementation (Train, Val, Test sets) to the original hierar-
chical LSTM study [21] test results, shown here as ”Jing 2018”. Also, we
independently trained Encoder-Decoder and Encoder-Decoder with Atten-
tion architectures with IU X-ray dataset (two last rows, *). BLEU-n denotes
the BLEU score n-grams. We could not replicate the performance as seen in
[21].

7.2 Sentence Generation by Hierarchical LSTM Co-
Attention

Sample paragraphs generated by of training are shown in Figure 12 and
Figure 13 (see notebook ./explore_generated_text.ipynb for more gen-
erated captions). The first image is negative, while the second has some
abnormalities and is also a lateral x-ray.

Observe, that at this training stage the model overfits to the most popular
(negative) sentences: ”no acute cardiopulmonary abnormality”, ”the heart is
normal in size”, ”the lungs are clear”, ”no focal consolidation pneumothorax
or pleural effusion identified”.

The model is clearly overfitting, as corroborated by the low generated
sentence diversity Figure 15. Test set consisted of 600 images, and almost
at least half of the paragraphs were unique, they consisted of only 14 different
sentences. These sentences not surprisingly are also the most frequently seen
sentences in the training set.

We should invest more time fixing the tag classifier and in grid/random
parameter search, especially for the learning rate and regularization.
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Figure 10: Tag classifier training loss for Hierarchical LSTM Co-Attenion
model. Multi-label classifier training failed. For details of MLC implemen-
tation see section 6.2

.

7.3 Co-Attention Implementation

A joint image and semantic feature attention mechanism was implement as
described in section 6.3. Since the model implementation has a bug, we
cannot verify attention results, however we give an example of the visual
attention responsible for diagnosing ”Pneumothorax” (shown in yellow) in
6.3.

Code for attention mechanism is found at: ./caption_and_attend.py.

7.4 Testing current Image captioning models

Successfully implemented and tested existing captioning models. See direc-
tory ./code/attend_tell for [52] and [57] implementations. We had no
problems replicating their results, although they were lower because we did
not allocate the necessary compute time (see the last 2 rows of Table 1).
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Figure 11: Training loss for Hierarchical LSTM Co-Attenion model.

8 Discussion and Future Directions

8.1 Report Generation from Medical Images

We were able to successfully replicate the encoder-decoder image captioning
models [52][57] for MSCOCO dataset, which contains images from everyday
life, as well as generating an ”impressions” caption for IU X-ray dataset [19].

In the absence of a reference implementation, we set out to verify the
state of the art chest x-ray report generation results from Jing at al (2018)
study [21]. To this end, we built a model and adapted it to IU dataset.
Unfortunately, the model was not training correctly, as explained is section
7.2, mostly due to a bug in multi-laber classifier implementation.

8.2 MIMIC-CXR

Since the Hierarchical LSTM Co-Attention model could not be replicated
successfully with IU dataset, we have not tried adapting it for an order of
magnitude larger MIMIC-CXR dataset (see [22], Table 1).

Since this dataset lacks MTI tags, the Medical Text Indexer (MTI) [37]
was used to extract tags from the ”findings” and ”impression” sections of
the reports, since they’re not present by default. Next, we used the MTI
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Figure 12: Sample caption 1

labeler and, since it doesn’t handle negations, MetaMap [3] to detect tags
with negation and discarded them.

8.3 Addressing lack of factual correctness in generated
metrics

Neural summarization models are able to generate summaries which have
high overlap with human references. However, existing models are not op-
timized and do not guarantee for factual correctness [60]. In the report
generation field we have observed that even metrics like CIDER, which are
developed for image captioning tasks, will not prioritize factual correctness.
For example, that a ground truth chest disease observation (by a doctor) is:

pneumothorax is seen, bilateral pleural effusions continue. Now imagine
two competing models produce these observations:
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Figure 13: Sample caption 2

A) no pneumothorax is observed, bilateral pleural effusions continue,
B) pneumothorax is observed on radiograph, bilateral pleural effusions

continue to be seen
Although B) is factually correct, it overlaps less with the ground truth ob-

servation when CIDER or ROUGE metrics are considered. Such observations
could invalidate most of the recent clinical image report generation studies
that relied on traditional NLP metrics as objectives to be optimized during
the training. Therefore, the future models will have to be trained with a new
”factual correctness” objective function or a reinforcement learning policy.

8.4 Embeddings as a NIBR Service Initiative

Joint multimodal embeddings have proved to increase the accuracy of many
medical prediction tasks. Such trained embeddings from various sources
could be made available to Novartis researchers and increase the predictive
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Figure 14: Sentence diversity

capabilities of their models. For example, text-annotated image datasets
of cancer biopsies, retina, chest x-rays, tissue stains and tomography scans
are abundant in academic and private databases. New initiatives such as
Novartis’s Data42 are designed to integrate the patient data from multi-
ple sources, therefore multimodal patient or disease level embeddings could
produce useful patient and disease representations for downstream learning
tasks.
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